
Efficient and Oblivious Query Processing for Range
and kNN Queries

(Extended Abstract)

Zhao Chang1, Dong Xie2, Feifei Li3, Jeff M. Phillips4, Rajeev Balasubramonian4
1Xidian University, China, 2The Pennsylvania State University, USA,

3Alibaba Group, China, 4University of Utah, USA
changzhao@xidian.edu.cn, dongx@psu.edu, lifeifei@alibaba-inc.com, jeffp@cs.utah.edu, rajeev@cs.utah.edu

Abstract—Oblivious RAMs (ORAMs) are proposed to com-
pletely hide access patterns. However, most ORAM constructions
are expensive and not suitable to deploy in a database for
supporting query processing over large data. In this work,
we design a practical oblivious query processing framework
to enable efficient query processing over a cloud database. In
particular, we focus on processing multiple range and kNN
queries asynchronously and concurrently with high throughput.
The key idea is to integrate indices into ORAM which leverages a
suite of optimization techniques (e.g., oblivious batch processing
and caching). Our construction shows an order of magnitude
speedup in comparison with other baselines over large datasets.

I. INTRODUCTION

A necessary step for keeping sensitive information secure

and private on the cloud is to encrypt the data. But query

access patterns over an encrypted database can still pose a

threat to data privacy and leak sensitive information. Oblivious

RAM (ORAM) is proposed to protect the client’s access

patterns from the cloud. However, most ORAMs are very

expensive and not suitable for deployment in a database. Some

advanced ORAMs handle operations (to read or write blocks)

asynchronously and achieve operation-level concurrency at

the storage level. However, they do not support query-level
concurrency, since each query (e.g., a range or a kNN query)

consists of a sequence of operations, and any incoming query

request is not processed until a prior ongoing query has been

completed. It creates a serious bottleneck under concurrent

workload in handling multiple clients.

Opaque [1] and ObliDB [2] are two novel studies concern-

ing generic oblivious analytical processing. However, Opaque

[1] needs to perform expensive scan-based operations to

support kNN or range queries. ObliDB [2] exploits indexed

storage method to support range queries without any optimiza-

tions. In this work, we propose a general oblivious query

processing framework (OQF) for cloud databases, which

supports concurrent query processing (i.e., concurrency within

a query’s processing) with high throughput. We focus on one

and multi-dimensional range and kNN queries. The key idea

is to integrate indices into ORAM and also leverage a suite

of optimization techniques including batch processing and

ORAM caching. In comparison with baseline methods, our

design achieves an order of magnitude speedup in terms of

query throughput. Please refer to [3] for the details.

get

Cloud Storage

Trusted

Untrusted put

ORAM Protocol
ORAM Stash ORAM Cache

Client Client ClientClient
Results Queries

Coordinator

Oblivious Query Framework

ORAM Data Structure
Secure Data Storage

Fig. 1: Oblivious query framework.

II. PROBLEM FORMULATION AND FRAMEWORK

Consider a client (aka data owner) who stores her data on a

remote cloud server and asks other clients (including herself)

to issue (range and kNN) queries. A trusted coordinator

collects queries from different clients. The communication

between clients and the coordinator are secured and not

observed by the server. Index structures such as B-tree and

R-tree are often built to enable efficient query processing. Our

goal is to prevent the server from inferring the query behavior

of clients by observing access locality from the index structure

and the data itself. Our problem is defined in Definition 1.

Definition 1. Oblivious Query Processing. Given an input
query sequence �q = {(op1, arg1), (op2, arg2), · · · , (opm,
argm)}, an oblivious query processing protocol P should
interact with an index structure I built on the server over
the encrypted database D to answer all queries in �q such
that all contents of D and I stored on the server and
messages involved between the coordinator and the server
should be confidential. Denote the access pattern produced
by P for �q as P (�q). In addition to confidentiality, for any
other query sequence �q∗ so that the access patterns P (�q) and
P (�q∗) have the same length, they should be computationally
indistinguishable for anyone but the coordinator and clients.

The oblivious query framework is shown in Figure 1. In

a preprocessing step, the data owner partitions records into

blocks, encrypts these data blocks, and builds an ORAM data

structure (e.g., Path-ORAM [4]) over them. She then uploads

the ORAM data structure to the cloud storage and shares

the encryption keys and other metadata (e.g., position map

in Path-ORAM) with the coordinator. Subsequently, clients

may issue (range and kNN) queries against the server through

the coordinator. The coordinator reads/writes blocks from/to

the server based on the ORAM protocol and generates query

results for the clients using an oblivious query algorithm.

1487

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00120

III. EFFICIENT OQF

We integrate an index (e.g., B-tree or R-tree) into the

ORAM before uploading the ORAM data structure to the

cloud (denoted as ORAM+Index). Intuitively, we query the

index structure by running the same algorithm as that over a

standard B-tree or R-tree index. The only difference is that

we are retrieving index and data blocks through an ORAM

protocol with the help of the ORAM data structure.

Another approach is to build an oblivious data structure

[5], which eliminates the need of storing the position map at

the coordinator. The main idea is that each node in the index

keeps the position tags and block IDs of its children nodes.

When retrieving a node through ORAM, we have acquired

its children position tags simultaneously. In our design, we

replace the standard B-tree or R-tree above with an oblivious

B-tree or R-tree (denoted as Oblivious Index).

To improve the overall query throughput, the coordinator

retrieves blocks from the cloud by leveraging batch processing

and ORAM caching. In detail, the coordinator keeps an

ORAM cache with at most τ blocks. If there is a buffer hit

for a subsequent block request, the coordinator does not need

to retrieve that block from the cloud again through ORAM.

Given s query batches {(q1,1, · · · , q1,g), · · · , (qs,1, · · · ,
qs,g)}, the ith batch needs to retrieve a set of mi blocks with

IDs {idi,1, · · · , idi,mi} that will be accessed by (qi,1, · · · ,
qi,g). We also let m = min{m1, · · · , ms}. Our objective is

to minimize the number of cache misses over the s batches.

Offline optimal strategy. In offline setting, the coordinator

knows block IDs from all (future) query batches. The offline

optimal algorithm is Farthest In Future (FIF). It means when

there is a cache miss, the coordinator will evict the block in

the cache that will not be accessed until farthest in future.

Online strategy. In online setting, the coordinator knows

only block IDs from the current query batch. The goal is to

find a strategy that enjoys a good competitive ratio ρ. Our

online strategy is called batch-FIF. When there is a cache miss,

the coordinator first evicts the block that will not be accessed

within the current batch using LRU strategy. If such a block

is not found, the coordinator will evict the block that will not

be accessed until farthest in future within the current batch.

Theorem 1. If there are duplicate block IDs within any batch,
ρ(batch-FIF) ≤ τ (τ is the buffer size); otherwise,

A) If τ ≤ m, the competitive ratio ρ(batch-FIF) ≤ 2;
B) Otherwise, the competitive ratio ρ(batch-FIF) ≤ τ .

IV. EXPERIMENTAL EVALUATION

We evaluate our method (OQF+Optimization), Baseline

(Opaque) (Opaque [1] without distributed storage), Shared

Scan (answering each batch of queries together using one

single scan), ORAM+Index, and Oblivious Index (similar to

ObliDB [2]). We also compare our method with Raw Index,

which builds a B-tree/R-tree index over data blocks on cloud

without using any encryption or any ORAM protocol.
We focus on R-tree range query on OSM dataset (available

at https://www.openstreetmap.org/) to report the experimental

results in scalability tests.

0 10 20 30 40 50
Raw Data Size (GB)

10
2

10
4

10
6

10
8

C
lo

ud
 S

to
ra

ge
 S

iz
e

(M
B)

Baseline (Opaque)
Shared Scan
ORAM+R-Tree

Oblivious R-Tree
OQF+Optimization
Raw Index

(a) Cloud storage size.

0 10 20 30 40 50
Raw Data Size (GB)

0

30

60

90

120

C
oo

rd
in

at
or

 M
em

or
y

Si
ze

 (M
B) Baseline (Opaque)

Shared Scan
ORAM+R-Tree

Oblivious R-Tree
OQF+Optimization
Raw Index

(b) Coordinator memory size.

Fig. 2: Storage cost against raw data size.

0 10 20 30 40 50
Raw Data Size (GB)

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

Q
ue

ry
 T

hr
ou

gh
pu

t (
qp

m
) Baseline (Opaque)

Shared Scan
ORAM+R-Tree

Oblivious R-Tree
OQF+Optimization
Raw Index

(a) Query throughput.

0 10 20 30 40 50
Raw Data Size (GB)

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

C
om

m
un

ic
at

io
n

C
os

t (
M

B/
Q

ue
ry

)

Baseline (Opaque)
Shared Scan
ORAM+R-Tree

Oblivious R-Tree
OQF+Optimization
Raw Index

(b) Communication cost.

Fig. 3: Query performance against raw data size.

Figure 2a shows the cloud storage cost. Baseline (Opaque)

and Shared Scan simply store encrypted data blocks to the

cloud. Raw Index needs a little more cost, due to building an

index over the data. The other three methods need roughly

10X larger cost, since they all require Path-ORAM data struc-

ture. Figure 2b shows the coordinator memory size. Baseline

(Opaque) and Shared Scan only keep a constant number of

blocks during scan-based operations. Oblivious Index achieves

less coordinator memory size than ORAM+Index, due to

integrating position tags into tree nodes. Raw Index and our

method have larger private memory sizes (which are set to

be the same) than ORAM+Index, since we let the coordinator

keep an additional cache.

Figure 3a shows the query throughput. The label on y-axis

“qpm” is short for “queries per minute”. Baseline (Opaque)

has the lowest query throughput, and Raw Index achieves

the largest one. In general, Shared Scan, ORAM+Index and

Oblivious Index have comparable performances in terms of

query throughput. Our method achieves 4X-405X larger query

throughput than the three methods, when raw data size varies

from 1.1 GB to 46 GB, due to batch processing and ORAM

caching. Figure 3b shows communication cost, which is rough-
ly inversely proportional to query throughput for each method.

ACKNOWLEDGMENT

Thanks for National Key R&D Program of China (2021YF-

B3101100), NSFC under grants No. 61972308 and U1736216,

and NSF grants 1564287, 1718834, 1816149, and 1953350.

REFERENCES

[1] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in NSDI, 2017, pp. 283–298.

[2] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious query processing for
secure databases,” PVLDB, vol. 13, no. 2, pp. 169–183, 2019.

[3] Z. Chang, D. Xie, F. Li, J. M. Phillips, and R. Balasubramonian, “Efficient
oblivious query processing for range and knn queries,” IEEE TKDE, To
appear, 2021.

[4] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path ORAM: An extremely simple oblivious RAM
protocol,” in CCS, 2013, pp. 299–310.

[5] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in CCS, 2014, pp. 215–226.

1488

